Learning Interpretable SVMs for Biological Sequence Classification
نویسندگان
چکیده
منابع مشابه
Learning interpretable representations of biological data
The increasing ease of collecting genome-scale data has rapidly accelerated its use in all areas of biomedical science. Translating genome scale data in to testable hypothesis, on the other hand, is challenging and remains an active area method development. In this talk we present two machine learning approaches to deduce data representations that are inspired by a mechanistic understanding of ...
متن کاملA Bayesian Framework for Learning Rule Sets for Interpretable Classification
We present a machine learning algorithm for building classifiers that are comprised of a small number of short rules. These are restricted disjunctive normal form models. An example of a classifier of this form is as follows: If X satisfies (condition A AND condition B) OR (condition C) OR · · · , then Y = 1. Models of this form have the advantage of being interpretable to human experts since t...
متن کاملInterpretable Two-level Boolean Rule Learning for Classification
This paper proposes algorithms for learning two-level Boolean rules in Conjunctive Normal Form (CNF, i.e. AND-of-ORs) or Disjunctive Normal Form (DNF, i.e. OR-of-ANDs) as a type of human-interpretable classification model, aiming for a favorable trade-off between the classification accuracy and the simplicity of the rule. Two formulations are proposed. The first is an integer program whose obje...
متن کاملAD-SVMs: A light extension of SVMs for multicategory classification
The margin maximization principle implemented by binary Support Vector Machines (SVMs) has been shown to be equivalent to find the hyperplane equidistant to the closest points belonging to the convex hulls that enclose each class of examples. In this paper, we propose an extension of SVMs for multicategory classification which generalizes this geometric formulation. The obtained method preserve...
متن کاملSVMs for Histogram-Based Image Classification
Traditional classification approaches generalize poorly on image classification tasks, because of the high dimensionality of the feature space. This paper shows that Support Vector Machines (SVM) can generalize well on difficult image classification problems where the only features are high dimensional histograms. Heavy-tailed RBF kernels of the form K(x,y) = e−ρ P i |x i −y i | with a ≤ 1 and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2006
ISSN: 1471-2105
DOI: 10.1186/1471-2105-7-s1-s9